The Impact of a Ligand Binding on Strand Migration in the SAM-I Riboswitch
نویسندگان
چکیده
Riboswitches sense cellular concentrations of small molecules and use this information to adjust synthesis rates of related metabolites. Riboswitches include an aptamer domain to detect the ligand and an expression platform to control gene expression. Previous structural studies of riboswitches largely focused on aptamers, truncating the expression domain to suppress conformational switching. To link ligand/aptamer binding to conformational switching, we constructed models of an S-adenosyl methionine (SAM)-I riboswitch RNA segment incorporating elements of the expression platform, allowing formation of an antiterminator (AT) helix. Using Anton, a computer specially developed for long timescale Molecular Dynamics (MD), we simulated an extended (three microseconds) MD trajectory with SAM bound to a modeled riboswitch RNA segment. Remarkably, we observed a strand migration, converting three base pairs from an antiterminator (AT) helix, characteristic of the transcription ON state, to a P1 helix, characteristic of the OFF state. This conformational switching towards the OFF state is observed only in the presence of SAM. Among seven extended trajectories with three starting structures, the presence of SAM enhances the trend towards the OFF state for two out of three starting structures tested. Our simulation provides a visual demonstration of how a small molecule (<500 MW) binding to a limited surface can trigger a large scale conformational rearrangement in a 40 kDa RNA by perturbing the Free Energy Landscape. Such a mechanism can explain minimal requirements for SAM binding and transcription termination for SAM-I riboswitches previously reported experimentally.
منابع مشابه
Atomistic details of the ligand discrimination mechanism of S(MK)/SAM-III riboswitch.
SAM-III riboswitch, involved in regulating sulfur metabolic pathways in lactic acid bacteria, is capable of differentiating S-adenosyl-l-methionine (SAM) from its structurally similar analogue S-adenosyl-l-homocysteine (SAH). Atomic level understanding of the ligand recognition mechanism of riboswitches is essential for understanding their structure-function relationships in general. In the pre...
متن کاملTertiary contacts control switching of the SAM-I riboswitch
Riboswitches are non-coding RNAs that control gene expression by sensing small molecules through changes in secondary structure. While secondary structure and ligand interactions are thought to control switching, the exact mechanism of control is unknown. Using a novel two-piece assay that competes the anti-terminator against the aptamer, we directly monitor the process of switching. We find th...
متن کاملP-31: The Alteration of SpermatogenesisHas A Correlation with Sertoli Cell Mitochondrial Abnormal Morphology in Cytotoxicity of Testicular Tissue Mediatedwith Monosodium
Background: Male infertility has many causes, including genetic infertility. The NOP2/Sun domain family, member7 (Nsun7) gene, which encodes putative methyltransferase Nsun7, has a role in sperm motility. The aim of the present study was to investigate the effect of the T26248G polymorphism on Nsun7 protein function and its role in male infertility. Materials and Methods: Semen samples were col...
متن کاملP-30: The Effect of The T26248G Polymorphism on Putative MethyltransferaseNsun7 Protein Function and Its Role in Male Infertility
Background: Male infertility has many causes, including genetic infertility. The NOP2/Sun domain family, member7 (Nsun7) gene, which encodes putative methyltransferase Nsun7, has a role in sperm motility. The aim of the present study was to investigate the effect of the T26248G polymorphism on Nsun7 protein function and its role in male infertility. Materials and Methods: Semen samples were col...
متن کاملThe expression platform and the aptamer: cooperativity between Mg2+ and ligand in the SAM-I riboswitch
Riboswitch operation involves the complex interplay between the aptamer domain and the expression platform. During transcription, these two domains compete against each other for shared sequence. In this study, we explore the cooperative effects of ligand binding and Magnesium interactions in the SAM-I riboswitch in the context of aptamer collapse and anti-terminator formation. Overall, our stu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2013